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Abstract

The robust control of a mobile robot in a rough ter-
rain environment is a challenging endeavour, since
any reliance on favourable surface or environmental
conditions will inevitably lead to task failure. This pa-
per presents the preliminary development of a unified
navigation system used to control a nonholonomic mo-
bile robot in an a priori unknown outdoor domain. Ac-
curate, high-resolution environmental data was gath-
ered from a scanning laser rangefinder (ladar), which
constitutes the robot’s exteroceptive perception sys-
tem. Using this data, a 3D tessellated environmen-
tal model was created that generically captures terrain
traversability. By adapting the Rapidly-exploring Ran-
dom Tree (RRT) approach to the tessellated model, an
efficient kinodynamic path planning algorithm was de-
vised that enables point-to-point trajectory traversal.
This path planning strategy was found to be a com-
putationally efficient method of producing robust and
versatile path plans.

1 Introduction

Mobile robot navigation requires the successful in-
tegration of sensing, environmental mapping, locali-
sation and path planning. These four critical com-
ponents are governed by a control system to render
the desired robotic function. In a rough terrain envi-
ronment the control system needs to account for an
undulating surface that has a cover taxonomy possi-
bly consisting of rocks, trees, bushes, grass, soil, and
water. The surface and environmental uncertainty ex-
isting in an outdoor domain makes the task of robot
navigation a complex issue.

Rough terrain navigation has applications in cross-
country and interplanetary exploration, search and
rescue, and security missions (for example, ground

surveillance). Mars exploration is an application do-
main where there is always a human presence in the
control loop, however, due to the limited communi-
cation bandwidth and long delays, continuous teleop-
eration is not possible bringing about the need for a
certain level of robot autonomy. Unlike indoor work-
places, the quest for distance optimality alone (as in
A* search [1]) is insufficient in rough terrain as the
complex and harsh nature of the environment can-
not be disregarded. For instance, bodies of water or
muddy patches might not be geometrically revealed to
the perception system but will inevitably damage the
vehicle if not taken into consideration. Consequently,
path planning in an outdoor environment is at best
a suboptimal arrangement of distance, time, energy
consumption and safety factors.

Several techniques have been proposed for navigat-
ing in unstructured environments. In [2] a video cam-
era is mounted at a high vantage point to visually
servo the mobile robot. While pragmatically shown
to be reliable, this method restricts the robot’s config-
uration space to the camera’s field of view. Artificial
potential fields have been proposed [3], which model
the goal point as an attractant and the obstacles as
repellents. A continuous potential field is then com-
puted to reactively guide the robot. However, this
physical analogy commonly suffers from cul de sacs
(concave obstacle configurations) that trap the robot.

The distance transform methodology [4] is a simple
and robust technique used for both finding optimal
collision free paths and obstacle growing (to accom-
modate the physical extent of the robot). The dis-
tance transform is calculated over a grid structured
spatial representation. In the case of path planning,
distances are propagated throughout each grid cell in
an outwards direction from specified goal points, to
ultimately fill the entire free space. Optimal paths
are then found by using a steepest descent trajectory
from any point in free space, without risk of local en-



trapment. Even though the distance transform has
a generality (conferred by the tessellated model) that
is useful in rough terrain environments, it is compu-
tationally expensive and does not scale well to large
navigational areas at high resolution.

A versatile path planning strategy was proposed by
LaValle and Kuffner [5], termed the Rapidly-exploring
Random Tree (RRT). An RRT is a randomised data
structure that is used to compute collision-free kino-
dynamic trajectories for high degree-of-freedom prob-
lems. To account for a robot’s dynamic constraints a
state space representation is used, which includes both
configuration and velocity parameters. A path plan is
generated by defining two RRTs, one rooted at the
start state and the other at the goal state. Both trees
are grown by first selecting a random state from the
state space and then searching each tree for the nearest
neighbouring state. All possible control inputs are ap-
plied to the neighbouring states to generate successor
states that are collision-free, satisfy velocity bounds
and minimise some chosen metric (for example, min-
imum distance) to the random state. The procedure
is repeated until two states, one from each tree, are
regarded as being sufficiently close in the state space
to render a solution. The algorithmic pseudo code is
listed in [5].

RRTs rapidly explore the state space and therefore
scales well to large navigational areas, however, it is
assumed that the environment is known a priori and
is structured to assist with collision detection in real
space. Also the nearest-neighbour search is a com-
putationally expensive step. Hence, there is a need
for a more efficient path planning algorithm that can
robustly plan paths in an unknown rough terrain en-
vironment.

In this paper a path planning algorithm based on
the RRT approach adapted to a grid-based environ-
mental model is presented. The algorithm exhibits
the beneficial properties of an RRT in an outdoor do-
main and naturally incorporates a computationally ef-
ficient nearest-neighbour strategy. A 3D tessellated
mapping algorithm is proposed to effectively model a
rough terrain environment. In order to build an accu-
rate map, real-time environmental data was gathered
from a scanning laser rangefinder (ladar). No a priori
information is assumed.

In section 2, the perception system is described.
Section 3 presents the grid-based environmental model
used by the path planner proposed in section 4. Re-
sults from experimental tests of the system are re-
ported in section 5. The paper concludes with a dis-
cussion of the proposed methods and future work in

section 6.

2 Sensor System

The sensor selected to perceive the environment
and produce a navigable map, was a laser rangefinder
(ILM300HR). The laser was used to extract the scene
geometry and since it is an active ranging system it can
operate irrespective of ambient lighting conditions.
The 905nm wavelength laser has a maximum range of
300m, a typical accuracy of 30cm and makes a mea-
surement by using time-of-flight of a single laser pulse
(single shot mode) at a repetition rate of 1000Hz. The
laser is mounted on a high-speed pan-tilt unit (PTU-
46-17.5) for accurate 3D positioning, as depicted in
Fig. 1.

Figure 1: Laser Sensor and Pan-Tilt Unit

Range readings are taken in polar coordinates as
r = f(θ, φ), based on the reference system given in
Fig. 2. The pan-tilt unit provides a 318◦ horizontal
vision field (θ ∈ [−159◦, 159◦]) and a 77.7◦ vertical
vision field (φ ∈ [−46.7◦, 31◦]).

The horizontal and vertical angular resolution is
0.0514◦, determined by the gear ratios and angular
granularity of the internal stepper motors. In the
present investigation, for timely 3D data acquisition,
the pan-tilt unit was set to a particular elevation an-
gle and then horizontally scanned, while concurrently
matching the timing of the laser readings to the ad-
justable scan speed profile. Consequently, the hori-
zontal angular resolution had a variable granularity.



Figure 2: Ladar Reference System

Possible range outliers were eliminated using a mov-
ing median filter applied during a horizontal scan. A
filtered range (rf ) was found by averaging three con-
secutive range samples, as shown in Eq. 1. For map
building, the filtered polar coordinates were converted
to cartesian coordinates, z = f(x, y), using the trans-
formation in Eq. 2.

rf = median(rn−1, rn, rn+1) (1) x
y
z

 =

 −rf sin(θ) cos(φ)
rf cos(θ) cos(φ)

rf sin(φ)

 (2)

3 Map Building

A tessellated map was developed that consists of
a 1000x1000 cell lattice with a cellular resolution of
one square meter, providing a total of one square kilo-
meter coverage. Each cell contains a dynamic layer
used to represent height (z) discontinuity in the ter-
rain. The modeling of height discontinuity allows the
robot to traverse underneath obstacles when geomet-
rically able. For instance, the robot can pass beneath
a tree’s branches or a manmade structure if they are
sufficiently high above the ground to pose no risk. In
an indoor environment the z coordinate is commonly
truncated at a particular height to achieve the same
outcome. However, in an undulating outdoor environ-
ment, posing an artificial height limit could trap the
robot in a surface depression (or valley) caused by the
discarding of important surface data.

To adequately map a rough terrain environment,
each cell contains three fields (Fig. 3): the maximum

obstacle height (zmax), the minimum obstacle height
(zmin) and the terrain composition. The zmax and
zmin parameters track the effective occupied volume
within a cell. The terrain composition field is for load-
bearing surface determination and as it is a topic of
ongoing research, as discussed in section 6, it is only
mentioned here for completeness.

Figure 3: Internal Cell Structure

The zmax and zmin values form an obstacle layer
that dynamically adjusts to incoming sensor data. If
the robot can traverse a cell at zmax or under zmin,
the cell is considered free space. Each 3D sensor value,
zi = f(xi, yi) indexed by i = 0..imax, is inserted into
the map by first locating the relevant cell via the xi

and yi values and then using the zi value to determine
the affect of the range sample on the internal structure
of the cell. The procedure for updating a cell’s obstacle
layer is described by the pseudocode listed in Fig. 4.

UPDATE CELL( zi )

//define upper and lower threshold
Tupper = zmax + hrobot;
Tlower = zmin − hrobot;

if cell unexplored or zi < Tlower then
set zmax and zmin to zi;

else if zi > zmax and zi < Tupper then
zmax = zi;

else if zi < zmin and zi > Tlower then
zmin = zi;

else
discard data point;

Figure 4: Algorithm for Updating Cellx,y with a New
Ladar Value

Using the robot’s height (hrobot), the Tupper and



Tlower thresholds are calculated to obtain the mini-
mum height above and below the obstacle layer re-
spectively, for which the robot is geometrically able
to pass through. If new data points are found to be
within the threshold limits, the obstacle layer expands
to consume each point to record the change in the
robot’s viable passageways. Data points above Tupper

are discarded as they do not impinge on a cell’s free
space, however, data points below Tlower causes the
obstacle layer to shift down to effectively target the
obstacle’s base, which is more pertinent to a ground
vehicle. This process iteratively builds the grid-based
environmental model for use by the path planner.

4 Path Planning

The proposed path planning strategy generates
point-to-point kinodynamic trajectories using the tes-
sellated map discussed in section 3. The path plan-
ning problem is treated as a search in state space, X,
that incorporates both configuration and velocity pa-
rameters. A collision-free path that satisfies velocity
bounds (as determined by the robot’s locomotion sys-
tem) lies entirely in Xfree, where Xfree = X\Xobs.
States in Xobs includes obstacle regions, velocity con-
straints and states of inevitable collision where the
robot, due to its velocity, cannot perform collision
avoidance. Unexplored regions are optimistically as-
sumed to belong to Xfree.

Two Rapidly-exploring Random Trees (RRTs) are
defined, Tstart and Tgoal, initialised to the start state
(xstart) and goal state (xgoal) respectively. Both states
correspond to a cell in the map and a control input,
u, indicating velocity. Each tree consists of a set of
states, or vertices, linked by edges that represent fea-
sible paths in the environment.

The RRTs are grown by first selecting a random
cell (crand), constrained only by the grid boundary,
followed by searching for the nearest neighbouring cell
contained in Tstart and Tgoal, which initially would be
xstart and xgoal respectively. The nearest-neighbour
search is performed by picking a random cell (c1) at
a distance of one cell from crand. If cell c1 is a ver-
tex in the target tree, the search stops. Otherwise the
remaining cells, at the same distance from crand, are
checked in a clockwise direction from c1. The pro-
cess repeats at sequentially increasing distances from
crand, until the nearest neighbouring vertex is found.
As depicted by Fig. 5, the order of the search propa-
gates in an outward direction from crand, analogically
resembling a water ripple.

Figure 5: Nearest-Neighbour Search

Control inputs are applied, for a fixed time inter-
val (∆t), to the nearest neighbouring cells. The in-
puts are chosen such that the created edges are in
Xfree and the Euclidean distance to crand is min-
imised. Each newly created edge is finally terminated
by a vertex. Repeating the procedure iteratively ex-
pands Tstart and Tgoal, adding feasible vertices and
edges during each cycle.

The RRTs are grown throughout Xfree until a cell
in Tstart intersects, or is directly adjacent to, a cell in
Tgoal providing a point-to-point path between xstart

and xgoal. An upper limit of K vertices is imposed, in
case xgoal is unreachable.

5 Experimental Results

Experimental tests were performed in an outdoor
environment using a 3D laser scan, which covered a
horizontal range of [−154.2◦, 154.2◦] and a vertical
range of [−25.7◦, 20.6◦]. The horizontal angular reso-
lution was set to 0.0771◦, with the vertical angular res-
olution set to 0.257◦. This resulted in approximately
725000 data points being gathered in a 10 minute time
period. The filtered data from a laser scan, shown in
Fig. 6, proved to be sufficiently accurate to map the
outdoor testing area.

The proposed path planning algorithm was initially
tested using an unexplored grid, to observe its be-
haviour under a vertex limit (K) set to 1000, a control
input of up to 20cm/s and a ∆t of 30s. As depicted in
Fig. 7, the RRTs rapidly expand to the grid bound-
aries providing efficient feasible path generation. The
use of two RRTs, one rooted at xstart and the other
at xgoal, was found to give a higher probability of in-
tersection between the start and goal cells.

An indication of the computational efficiency of the
nearest-neighbour search is given in Fig. 8, which was
obtained using a single RRT with K set to 10000.
As shown, the number of cells searched per cycle
decreases exponentially as the total number of ver-



Figure 6: Laser Scan of an Outdoor Environment

Figure 7: Rapidly-Exploring Random Trees Adapted
to the Tessellated Model

tices generated increases. This beneficial property
translates into a decreasing computational load as the
RRTs dilate over time.

Fig. 9 depicts a path planning scenario where a
path has been generated from xstart to xgoal using the
map created from the laser scan (Fig. 6). The path
traverses across a rugby field, circumnavigates clusters
of trees and heads down a road to reach the target.
Even though the path plan is not globally optimal,
with respect to distance, it is efficiently generated and
feasible for an outdoor environment.

Figure 8: Computational Efficiency of the Nearest-
Neighbour Search

6 Discussion and Conclusions

The presented path planning approach was found to
efficiently produce feasible paths in an outdoor envi-
ronment. The generated paths incorporate dynamic
constraints, accommodating the robot’s locomotion
capabilities or lack thereof. The RRTs rapidly ex-
plore the free space by a process of random sampling,
tending to extend the vertices within relatively large
Voronoi regions. Due to the randomised nature of the
algorithm, problems due to cul de sacs have not been
found, however, more investigation is required for ab-
solute confirmation.

Generated paths were found to incur small zigzags,
or random noise, which could cause the robot to turn
unnecessarily. Using a filter, such as turning only
when the path deviates outside a specified channel,
can easily eliminate this problem and therefore min-
imise the number of rotational movements, if transla-
tional movements are favoured.

The proposed path planner can efficiently handle
updates to the environmental map, as the robot gath-
ers new sensor data from different vantage points. A
cell considered free but then later found to be occu-
pied, can be counteracted by simply discarding any
paths traversing through that cell. Conversely, a cell
assumed to be occupied but then later found to be
free, does not require any counter-action as the cell
becomes a member of free space and is naturally in-
corporated into future path planning decisions. The
start state does not need to be redefined, or the algo-
rithm rerun, upon map changes.

Another beneficial property is that the path planner
can provide alternative paths, giving the robot the



Figure 9: Path Planning Scenario

flexibility to choose the best path based on an optimal
criteria. Instead of stopping the algorithm at the first
solution, the RRTs can be continually grown until the
desired solution is yielded and possible contingencies
addressed.

An accurate vehicle model is currently being de-
vised to test the path planner on a converted outdoor
vehicle. For a complete rough terrain solution, future
work will focus on the following areas:

• localisation based on natural landmarks, where
the robot can robustly determine its position
without the need for site preparation (for exam-
ple, inserting beacons).

• load-bearing surface determination to differenti-
ate between the surface touched by the robot’s
wheels and the visible surface, as discussed in
[6, 7].
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